

высоковольтные транзисторы ФИРМЫ PHILIPS

ассортименте фирмы PHILIPS имеется целая гамма высоковольтных транзисторов, предназначенных для использования в телевизионных импульсных силовых цепях питания и в устройствах строчного отклонения телевизоров и мониторов. Все они обычно выполнены либо по биполярной технологии, либо по технологии MOSFET (полевой МОП-транзистор с изолированным затвором).

ТРАНЗИСТОРЫ ДЛЯ ИМПУЛЬСНЫХ ИСТОЧНИКОВ ПИТАНИЯ

Эти транзисторы в большинстве своем служат в устройствах формирования рабочих напряжений, в том числе для питания оконечных каскадов формирования звукового сигнала.

Просто и наиболее экономично они работают в двухтактном преобразователе с прерывающимся током дросселя.

Максимальное значение напряжения на коллекторе транзистора в таком преобразователе равно сумме подводимого выпрямленного напряжения питающей сети и напряжения пикового броска. Амплитуда напряжения

этого броска зависит от начальной индуктивности трансформатора преобразователя и от емкости сглаживающего пульсации конденсатора, подключенного в цепи коллектора транзистора. Для используемого напряжения электросети устанавливается минимально необходимое напряжение коллектор-эмиттер, которое только может выдержать транзистор. При увеличении индуктивности трансформатора или при уменьшении емкости конденсатора надежность транзистора по мошности и частоте повышается.

Мощные транзисторы MOSFET

Сетевое напряжение 110/220 В требует применения транзисторов с рабочим напряжением не менее 400 В. Таким напряжением обладают мощные транзисторы серии Power MOSFET. При сетевом напряжении 220/240 В рабочее напряжение транзистора должно быть не менее 800 В и только в особых случаях (при ограничении напряжения на коллекторе) допускается применение транзистора той же серии с напряжением около 600 В. Основные параметры указанных транзисторов даны в табл. 1.

Биполярные транзисторы

При напряжении питающей сети 220/240 В в двухтактных преобразователях рекомендуют использовать транзистор, рассчитанный на напряжение 1000 В. Транзисторы, основные характеристики которых приведены в табл. 2, предназначены именно для этих целей. Если начальная индуктивность трансформатора велика и напряжение может превышать 1000 В, лучше использовать транзисторы ВU603 и ВU903 с напряжением 1350 В (см. табл. 2).

Критерии выбора транзистора

Главным критерием выбора служат максимальные значения токов и напряжений, допустимые для выбранного транзистора. При выборе типа транзистора (MOS-FET или биполярный) следует руководствоваться простотой его управления, стоимостью и требованием минимальной энергии при работе в наиболее сложных схемах. Следует также обращать внимание и на возможность переключения с малыми потерями на частотах ниже 50 кГц.

Играют роль также размеры прибора. Так, в устройствах пита-

Таблица 1

Транзистор	Максимальное напряжение сток-исток, В	Максимальное сопротивление между стоком и истоком открытого транзистора, Ом	Ток стока, А
BUK454-400B	400	1,8	1,5
BUK455-400B	400	1,0	2,5
BUK437-400B	400	0,5	6,5
BUK454-800A	800	6,0	1,0
BUK456-800A	800	3,0	1,5
BUK456-800B	800	2,0	4,0
BUK438-800A	800	1,5	4,0

Таблина 2

Транзистор	Максимальное напряжение коллектора, когда потенциал базы ниже или равен потенциалу эмиттера, В	Максимальное напряжение коллектора, когда потенциал базы выше потенциала эмиттера, В	Ток коллектора, А	Минимальный коэффициент усиления по току	Максимальное напряжение коллектор-эмиттер при насыщении транзистора, В
BUX85	1000	450	1	5	1,0
BUT11A	1000	450	2,5	5	1,5
BUT18A	1000	450	4	5	1,5
BUT12A	1000	450	5	5	1,5
BUW13A	1000	450	8	5	1,5
BU603	1350	550	2	6	2,0
BU903	1350	550	3,2	6	2,0

ния от сети 110/120 В наибольшее распространение получили транзисторы типа MOSFET с напряжением 400 В, в устройствах с напряжением питания 220/240 В преобладают биполярные транзисторы, хотя и здесь становятся популярными транзисторы MOSFET, рассчитанные на напряжение 800 В.

С помощью данных табл. 3 можно выбрать транзистор для двухтактного преобразователя источника питания с учетом указанных выше критериев.

ТРАНЗИСТОРЫ ДЛЯ УСТРОЙСТВ СТРОЧНОЙ РАЗВЕРТКИ ТЕЛЕВИЗОРОВ И МОНИТОРОВ

Существующие стандарты телевизионных разверток используют значение частоты, примерно равное 16 кГц. Системы телевидения высокой четкости (HDTV, ТВВЧ) используют вдвое большее значение (32 кГц). Причем в первом случае минимальный собственный период транзистора должен быть не менее 26 мкс, а во втором — не менее 13 мкс. Минимальные значения задержки включения для этих двух систем также определены и составляют соответственно 6,5 и 4 мкс. Задержку включения в конкретной схеме можно минимизировать, например, путем использования транзистора с максимальным отрицательным током базы (равным примерно половине тока коллектора). Отрицательное напряжение на базе при этом должно быть в пределах -2...-5 В.

Схему отклонения лучей можно считать сконструктированной

удачно, если обеспечены высокий КПД и низкий уровень электромагнитного излучения, а также низка себестоимость.

Транзистор с высоким напряжением позволил бы при малом токе отклоняющих катушек уменьшить уровень собственных электромагнитных излучений, однако при этом вследствие повышенного напряжения питания в нем увеличились бы собственные потери.

Наличие большого тока в катушках строчного отклонения лучей позволяет использовать выходной транзистор с низким напряжением на коллекторе и, соответственно, пониженное напряжение питания всей схемы отклонения. Это дает выигрыш в минимизации потерь переключения, однако большой ток в катушках влечет за собой большие колебания электромагнитного поля и необходимость намотки катушек толстым проводом.

На практике в цепях строчного отклонения применяют биполярные транзисторы с напряжением 1500 В. Максимальное значение тока коллектора должно при этом находиться в пределах 2...8 А, в зависимости от угла отклонения лучей кинескопа (90 или 110°), мощности высоковольтного источника питания и частоты отклонения.

Таблина 3

Мощность, Вт	Напряжение питающей сети, В		
	110/120	220/240	
50	BUK454-400B	BUK454-800B BUX85	
100	BUK455-400B	BUK456-800A BUT11A/BU603	
120	BUK437-400B	BUK438-800B BUT11A	
150	BUK437-400B	BUK438-800B BUT18A/BU903	
200	BUK437-400B	BUK438-800B BUT12A/BUW13A	

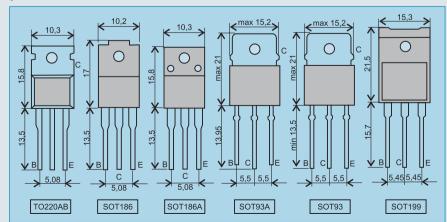
Таблица 4

Транзистор	Максимальное напряжение коллектор-эмиттер, В	Ток коллектора, А	Мощность, Вт	Корпус	Возможность использования	
					Телевизор	Монитор
BU505D	1500	2	75	TO220AB	Черно-белый	-
BU505DF	-"-	-"-	20	SOT186	14"	
BU506D	1500	3	100	TO220AB	Цветной 90°,	-
BU506DF	-"-	-"-	20	SOT186	1417"	
BU508AD	1500	4,5	125	SOT93	Цветной 110°,	-
BU508ADF	-"-	-"-	-"-	SOT199	2125"	
BU705D	1500	2	75	SOT93A	Черно-белый	-
BU705DF	-"-	-"-	29	SOT199	14"	
BU1508DX	1500	4,5	35	SOT186A	Цветной 110°, 2125"	VGA 14"
BU2506DF	1500	3,5	45	SOT199	Цветной 90°, 21"	-
BU2508AD	1500	4,5	125	SOT93	Цветной 110°,	VGA
BU2508ADF	-"-	-"-	45	SOT199	2125"	14"
BU2520AD	1500	6	125	SOT93	Цветной 110°,	SVGA
BU2520ADF	-"-	-"-	45	SOT199	2529"	1517"
BU2525ADF	1500	8	60	SOT199	Цветной 110°, 2529"	SVGA 1521"

В табл. 4 приведены основные данные для транзисторов, используемых в устройствах строчной развертки.

Если в обозначении транзистора имеется буква D, то внутри транзистора имеется встроенный (демпфирующий) диод Шоттки.

Изолированные корпуса, исключающие использование изолирующих прокладок между транзистором и радиатором, имеют в обозначении букву F.


Транзистор BU2508A спроектирован специально для схем отклонения: в нем минимизированы потери при переключении в сочетании с высоким коэффициентом усиления по мощности. Он допускает значительные изменения управляющего сигнала на базе и разброс сопротивлений нагрузки. Указанный транзистор можно с успехом использовать взамен транзисторов S2000A, 2SD1577, BU508A. Транзистор BU2508A имеет коэффициент усиления, равный 5, при токе коллектора 4 A, тогда как BU2520A имеет такое же усиление, но при токе коллектора 6 А. Это позволяет достигать больших мощностей от высоковольтных цепей, что в свою очередь позволяет получить высококонтрастные изображения.

Основные данные для транзисторов, используемых в устройствах строчной развертки мониторов, также приведены в табл. 4.

В монохромных компьютерных мониторах с частотами строчной развертки 31,5...48 кГц наиболее часто используется транзистор BU2508A.

В цветных мониторах SVGA с углом отклонения 90° чаще

всего используется транзистор BU2520A, а в цветных телевизорах с крупногабаритными кинескопами (угол отклонения 110°) и мониторов с кинескопами от BU2525A. 15" — транзистор Этот транзистор специально спроектирован для телевизоров высокого класса с экранами формата 16:9 и высоковольтным напряжением до 30 кВ. Ток коллектора этого транзистора достигает 8 А, а ток базы 1,6 А. На рисунке показаны стандартные корпуса, в которых выпускаются упомянутые транзисторы, и их цоколевки.

