Александр Пескин (г. Москва)

Микроконтроллер ST92R195B для телевизоров с цифровым управлением

Копирование, тиражирование и размещение данных материалов на Web-сайтах без письменного разрешения редакции преследуется в административном и уголовном порядке в соответствии с Законом РФ.

Микроконтроллер (МК) ST92R195B выпускается компанией STMicroelectronics для использования в современных цифровых телевизорах. МК питается напряжением 5 ± 0.5 B и имеет малое энергопотребление.

Ядро MK ST9+CORE (см. рис. 1) содержит центральный процессор CPU, регистровый набор Register File, контроллер прерываний Interrupt Management и драйвер запоминающего устройства MMU.

Регистры общего назначения могут быть использованы как накопители, индексные регистры или адресные указатели. МК может выполнять 16-битовые операции.

Для оптимизации работы МК могут быть выбраны следующие режимы потребляемой мощности:

- форсированный режим. Он предусматривает полное использование быстрых процессов СРU при максимальной тактовой частоте, допускаемой фазовой петлей PLL управляющего тактового генератора RCCU;
- режим ожидания во время прерывания. Он предусматривает задержку выполнения основной программы на время обработки прерывания;

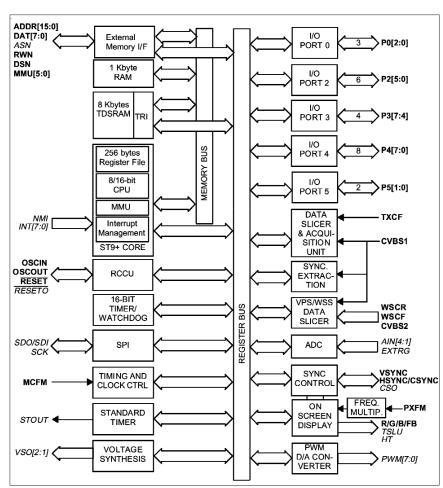


Рис. 1. Структурная схема микроконтроллера ST92R195B

Таблица 1. Альтернативные функции выводов портов ввода/вывода МК ST92R195B

Назва-	Номер вывода	Альтернативная функция			
ние порта		Обозна- чение	I (вход) или О (выход)	Название	
P0.0	30	_	I/O	_	
P0.1	29	_	I/O	_	
P0.2	28	AN4	1	Вход 4 АЦП	
P2.0	25	INT7	I	Вход 7 внешнего прерывания	
		AIN1	1	Вход 1 АЦП	
P2.1 36		INT5	I	Вход 5 внешнего прерывания	
P2.2	37	INT0	I	Вход 0 внешнего прерывания	
		AIN2	1	Вход 2 АЦП	

Назва-	Номер вывода	Альтернативная функция			
ние порта		Обозна- чение	I (вход) или О (выход)	Название	
P2.3	26	INT6	1	Вход 6 внешнего прерывания	
P2.3	20	VSO1	0	Выход 1 синтезатора напряжения	
P2.4	27	NMI	I	Немаскируемый вход прерывания	
	38	AIN3	I	Вход 3 АЦП	
P2.5		INT4	T	Вход 4 внешнего прерывания	
		VS02	0	Выход 2 синтезатора напряжения	
P3.4	22	-	I/O	-	

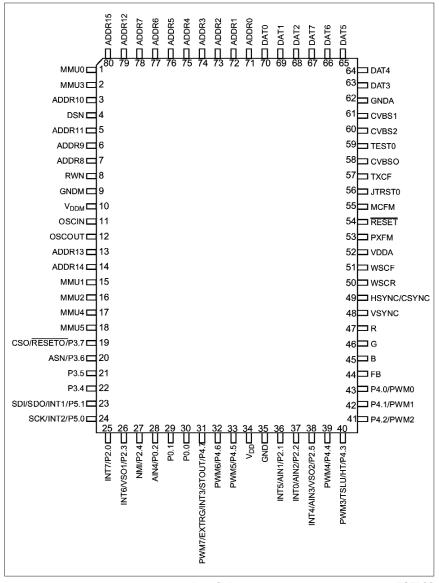


Рис. 2. Расположение выводов в корпусе PQFP80

режим остановки CPU и периферийных контроллеров (в том числе тактового генератора). Для выхода из этого режима на соответствующий вход МК нужно подать сигнал начального сброса.

Линии цифровых входов/выходов (I/O) группируются в пять портов PORTO-PORT5. Эти линии могут быть распределены для обеспечения временных и статусных сигналов, сигналов таймера, внешних прерываний и последовательных или параллельных сигналов I/O.

МК содержит весь необходимый набор периферийных устройств для управления телевизором:

- синтезатор напряжения настройки VOLTAGE SYNTHESIS;
- ограничитель-формирователь данных DATA/SLICER сигналов VPS (распознавание видеопрограмм) и WSS (распознавание радиостанций);
- ограничитель DATA SLICER&ACQUISITION UNIT;
- внешнее оперативное запоминающее устройство (ОЗУ) RAM дисплея телетекста.

Пользовательский интерфейс включает в себя узел экранного дисплея ON SCREEN DISPLAY (OSD), который обеспечивает до 26 телевизионных строк из 80, хранящихся в ОЗУ. Типовое разрешение при этом составляет 10×10 точек, кроме того, возможно отображение 4-х типовых размеров.

Внутреннее ОЗУ телетекста и дисплея TDS RAM может быть при-

Таблица 1. Продолжение

Назва-	Номер вывода микро- конт- роллера	Альтернативная функция			
ние порта		Обозна- чение	I (вход) или О (выход)	Название	
P3.5	21	_	I/O	_	
P3.6	20	ASN	0	Выход адресного стробирующего сигнала (на внешнюю память)	
P3.7	19	0	0	Выход внутреннего сигнала начального сброса	
		CSO	0	Выход синхросигнала	
P4.0	43	PWM0	0	Выход 0 ШИМ (PWM)	
P4.1	42	PWM1	0	Выход 1 ШИМ	
P4.2	41	PWM2	0	Выход 2 ШИМ	
P4.3	40	PWM3	0	Выход 3 ШИМ	

Назва-	Номер вывода	Альтернативная функция			
ние порта	микро- конт- роллера	Обозна- чение	I (вход) или О (выход)	Название	
P4.3	40	TSLU	0	Цифровой выход передачи сигнала прозрачности	
		_	0	Выход сигнала полутонов	
P4.4	39	PWM4	0	Выход 4 ШИМ	
P4.5	33	PWM5	0	Выход 5 ШИМ	
P4.6	32	PWM6	0	Выход 6 ШИМ	
	31	EXTRG	I	Вход сигнала от внешнего АЦП	
P4 7		PWM7	0	Выход 7 ШИМ	
F4.1		STOUT	0	Выход таймера	
		INT3	I	Вход 3 внешнего прерывания	

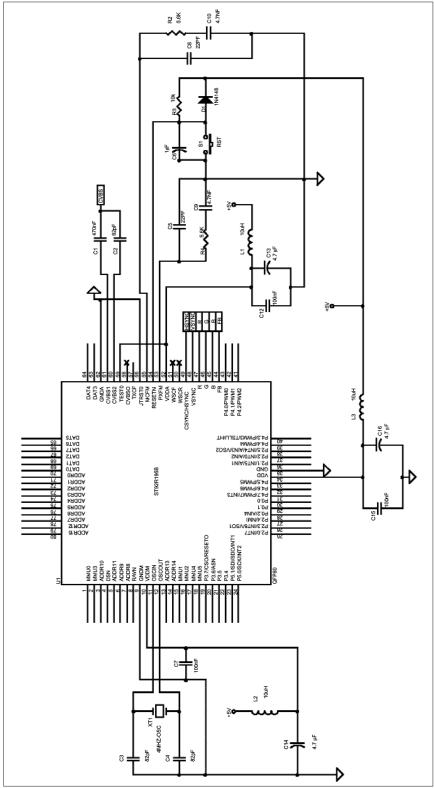


Рис. 3. Рекомендуемая схема включения микроконтроллера ST92R195B

менено для сохранения страниц телетекста и параметров дисплея.

Синтезатор напряжения настройки телевизора использует широтно-импульсную модуляцию ШИМ (PWM) или модуляцию скорости передачи битов BRM.

Управление узлами телевизора, в том числе, обеспечивается восемью 8-битовыми выходами РWM, имеющими максимальную частоту 23 437 Гц при 8-битовом разрешении. Могут быть запрограммированы и более низкие разрешения с более высокими частотами.

Последовательный интерфейс SPI используется для управления (или обмена данными) различными узлами ТВ.

MK имеет один 16-разрядный таймер STANDARD TIMER с делителем частоты.

На рис. 2 показано расположение выводов микроконтроллера в корпусе PQFP80. Их назначение следующее:

ADDR [15:0] (выв. 3, 5-7, 13, 14, 71-80) — линии адреса (на внешнее ОЗУ);

CVBS 1 (выв. 61) — вход 1 видеосигнала;

CVBS 2 (выв. 62) — вход 2 видеосигнала;

CVBS 0 (выв. 58) — тестовый вывод;

DAT [7:0] (выв. 63-70) — линии данных (на внешнее ОЗУ);

DSN (выв. 4) — линия синхронизации (на внешнее ОЗУ);

FB (выв. 44) — выход импульсов быстрого гашения;

GND (выв. 35) — общий цифровых цепей;

GNDA (выв. 62) — общий аналоговых цепей;

GNDM (выв. 9) — общий цепей управления интерфейса для внешнего ОЗУ;

HSYNC/CSYNC (выв. 49) — вход строчных синхроимпульсов;

JTRST0 (выв. 56) — тестовый вывод;

MCFM (выв. 55) — вход аналогового сигнала умножителя частоты;

MMU [5:0] (выв. 1, 2, 15-18) — интерфейс внешнего ОЗУ;

OSCIN (выв. 11) — вход тактового генератора;

OSCOUT (выв. 12) — выход тактового генератора;

РХFМ (выв. 53) — аналоговый вход умножителя частоты узла OSD;

(выв. 54) — вход сброса тактового генератора;

R (выв. 47) — аналоговый выход «красного» цвета;

G (выв. 46) — аналоговый выход «зеленого» цвета;

В (выв. 45)— аналоговый выход «синего» цвета;

Таблица 1. Окончание

Назва-	Номер вывода микро- конт- роллера	Альтернативная функция			
ние порта		Обозна- чение	I (вход) или О (выход)	Название	
P5.0	24	INT2	T.	Вход 2 внешнего прерывания	
		SCK	0	Тактовый выход последовательной шины SPI	

Назва-	Номер вывода	Альтернативная функция			
ние микро- порта конт- роллер		Обозна- чение	I (вход) или О (выход)	Название	
P5.1	23	SD0	0	Выход данных последовательной шины SPI	
		SDI	- 1	Вход данных последовательной шины SPI	
		INT1	I	Вход 1 внешнего прерывания	

Таблица 2. Основные характеристики МК и рекомендуемые параметры

Обозначение	Параметр, единица измерения	Значение		
Ооозначение	параметр, единица измерения	минимальное	максимальное	
VDD,VDDA	Напряжение питания, В	4,5	5,5	
IDD	Потребляемый ток, мА	4,5	100	
fOSCE	Частота внешнего генератора, МГц	70	8,7	
fOSCI	Частота внутреннего генератора, МГц	-	24	
VIHCK	Высокий уровень входного сигнала синхронизации, В	0,7VDD	_	
VILCK	Низкий уровень входного сигнала синхронизации, В	_	0,3VDD	
VIHT	Высокий уровень входного сигнала TTL, В	2	_	
VILT	Низкий уровень входного сигнала TTL, В	2,0	0,8	
VIHC	Высокий уровень входного сигнала CMOS, В	0,8VDD	_	
VILC	Низкий уровень входного сигнала CMOS, В	_	0,2VDD	
VIHRS	Высокий уровень входного сигнала сброса, В	0,7VDD	_	
VILRS	Низкий уровень входного сигнала сброса, В	_	0,3VDD	
VOH	Высокий уровень выходного сигнала, В	VDD-0,8	_	
VOL	Низкий уровень выходного сигнала, В	_	0,4	
TA	Температура окружающей среды, °С	_	70	

RWN (выв. 8) — сигнал стробирования при выполнении операций чтения/записи (на внешнее ОЗУ);

TEST 0 (выв. 59) — тестовый вывод;

ТХСF (выв. 57) — аналоговый вход ограничителя и формирователя сигналов телетекста;

VDD (выв. 34) — напряжение питания цифровых цепей 5 В;

VDDA (выв. 52) — напряжение питания аналоговых цепей 5 В;

VDDM (выв. 10) — напряжение питания элементов интерфейса с внешним ОЗУ;

VSYNC (выв. 48) — вход кадровых синхроимпульсов;

WSCF (выв. 51) — аналоговый вход ограничителя-формирователя данных VPS/WSS;

WSCR (выв. 50) — аналоговый вход ограничителя-формирователя данных VPS/WSS;

P0 [2:0] (выв. 28-30) — линии входов/выходов I/O порта 0;

P2 [5:0] (выв. 25-27, 36-38) — линии входов/выходов порта 2;

P3 [7:4] (выв. 19-22) — линии входов/выходов порта 3;

Р4 [7:0] (выв. 31-33, 39-43) — линии входов/выходов порта 4;

P5 [1:0] (выв. 3, 24) — линии входов/выходов порта 5.

Каждый вывод портов I/O может нести различное функциональное назначение (см. табл. 1).

Рекомендуемая схема включения МК показана на рис. 3.

Основные характеристики МК и рекомендуемые параметры приведены в табл. 2.

Внимание!

Издательство «Ремонт и Сервис 21» приглашает авторов. С условиями сотрудничества Вы можете ознакомиться на сайте:

www.remserv.ru

Тел./факс: 8-499-795-73-26

Свои предложения направляйте по адресу: 123001, г. Москва, а/я 82 или по E-mail: ra@coba.ru

